【媒体聚焦】广州新闻电台:读病历、做诊断——这个会“思考”的AI不简单

日期:2019-02-15

广州市妇女儿童医疗中心联合多个科研团队,成功将人工智能技术升级,让AI医生不再只会“看图”,还能读懂“中文”病历,作出诊断——这项最新科研成果,在北京时间2月12日被刊登在国际知名医学科研期刊《自然医学》上。这也是

全球首次在顶级医学杂志发表有关自然语言处理技术基于中文文本型电子病历做临床智能诊断的研究成果。

点击链接收听音频,听听广州新闻电台对市妇儿中心人工智能最新科研成功的报道

https://mp.weixin.qq.com/s?__biz=MzA3Mjk3ODkwNA==&mid=2650471259&idx=3&sn=38b3cee309bc3a3b30d98e152a89df91&chksm=871843ecb06fcafa7ff0516563de37e72add31104d462c6f7508f715d467ae1af922a3c48bf4&token=395988268&lang=zh_CN#rd

不仅能够“看图”识别影像

还能“识字”读懂病历

近年来,AI在基于医学图像的诊断工具一般局限于相对标准化的静态图像数据。在这项最新科研成果中,人工智能在识别影像的基础上,通过自动学习病历文本数据(医生的知识和语言)中的诊断逻辑,逐步具备了一定的病情分析推理能力,能更进一步读懂、分析复杂的病例,意味着人工智能或将能像医生一样“思考”。为此,医生、科学家和技术人员通力合作,由30余位高级儿科医师和10余位信息学研究人员组成的专家团队手动给电子病历上的6000多张图表进行注释,并持续对模型进行检验和迭代。

研究团队还开发了一套诊断结果智能推荐系统,模拟人类医生的诊疗路径,把目标患儿进行逐级判定。具体来看,这套系统首先会按呼吸系统疾病、胃肠道疾病、全身性疾病等几大系统分,然后在每一类下面做细分。举例来说,在最常见的呼吸系统疾病中,这个系统会先按上呼吸道和下呼吸道进行区分,再按喉炎、气管炎、支气管炎、肺炎进行细分。经过检验,在每一层级,由AI做出的初级诊断在精确度上都接近检查医师做出的初级诊断。例如在患儿群体中最常见的急性上呼吸道感染,模型对病例的诊断达到95%的准确率。

对于一些凶险的、有可能威胁生命的疾病(例如急性哮喘发作、细菌性脑膜炎等),算法也同样表现出了强大的诊断性能。广州市妇儿中心儿内科门诊主任何丽雅认为:“这在临床应用中有非常重要的意义,因为有了AI快速分诊的辅助,就可以让医疗服务的有限资源用于最需要帮助的患者。”

可应用于诊断多种儿科常见疾病

准确度与经验丰富的儿科医师相当

通过自动学习来自56.7万名儿童患者的136万份高质量电子文本病历中的诊断逻辑,该AI应用于诊断多种儿科常见疾病,准确度与经验丰富的儿科医师相当。研究人员随机抽出12000份患儿病历,并把20位“参赛”儿科医生按年资和临床经验高低分成5组,看看AI的成绩和哪一组医生接近。结果显示,AI模型的平均得分高于两组低年资医生,接近三组高年资医生。

研究人员介绍,该AI系统可以通过人机交互获取患者或家长口述文本,包括主诉、症状、疾病史、用药史等信息,做出粗略诊断,给出可能的疾病范围;通过医生当面问诊或互联网远程问诊,获取详细病情及鉴别诊断特征,模型据此重新运算,给出具体的精确诊断;如果有实验室检验或影像检查数据,AI模型还可以进一步确认其诊断结果。更重要的是,它具备增量学习的功能,在实践中对于被采纳的结果会增强记忆,对于未被采纳的结果在核实之后会通过继续学习实现能力的提升。

仍有很多基础性工作要做

未来前景更广阔

据研究团队介绍,这个人工智能辅助诊断系统将可以通过多种方式应用到临床中。首先,它可以用作分诊程序。例如,当患者来到急诊科,可由护士获取其生命体征、基本病史和体格检查数据输入到模型中,允许算法生成预测诊断,帮助医师筛选优先诊治哪些患者。另一个潜在应用是帮助医师诊断复杂或罕见疾病,通过这种方式,医师可以使用AI生成的诊断来帮助拓宽鉴别诊断并思考可能不会立即显现的诊断可能性。

广州市妇女儿童医疗中心主任夏慧敏表示,“这项技术将能形成大范围的示范推广,为基层儿科医生和年轻儿科医生提供辅助诊疗服务,为患儿家长提供智能自诊服务和权威的第二诊疗意见,避免误诊、漏诊造成的医疗风险。”夏慧敏认为,这项研究最大的贡献在于,AI不仅仅能够“看图”,而且能够“识字”,能像人类一样读懂文本中蕴藏的疾病信息。通过系统学习文本病历,人工智能或将可以诊断更多疾病。

来源:广州新闻电台

记者 | 赖婷婷

通讯员 | 周密